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Abstract

The eigenvalues for oscillators with quartic and sextic anharmonicities
(
V (r) =

l(l+1)

r2 +ar2 +br4 +cr6
)

have been calculated for a restricted set of parameters by
supersymmetric quantum mechanics. We show that energies of at most a few
levels can be obtained algebraically for a severely restricted set of parameters
resulting from the satisfaction of a few constraint conditions. We present how
conditional shape-invariance symmetry of supersymmetric partner potentials
leads to the conditional exact solution. We also indicate its generalization in N
dimensions.

PACS numbers: 03.65.Ca, 03.65.Ge

Double-well anharmonic oscillators with a quartic term
(
V (x) = − 1

2mω2x2 + βx4
)

are
widely used as theoretical models in molecular spectroscopy, quantum field theory, nuclear
physics and also in solid-state physics [1–4]. This potential is interesting as it defines the
quantum tunneling through the double-well barrier [5]. The bistable potential is also widely
used to describe superconducting Josephson devices. Some recently discovered phenomena
such as structural phase transition and polaron formation in solids, are well described by an
anharmonic potential with more higher-order terms [6]. Natuarally, the addition of a sextic
term in the above potential

[
V (x) = − 1

2mω2x2 + βx4 + γ x6
]

will improve the required high
precision description of quantum bistable systems. Thus, the accurate knowledge of energy
eigenvalues of the sextic anharmonic potential (SAHO) is essential. These have been studied
extensively by a number of authors, and we have the Hill determinant and modified Hill
determinant method [7–9], Pade approximation [10, 11], perturbation method [12], Borel
summation technique [13] and supersymmetric quantum mechanics (SSQM) [14–16]. It is
still a challenging problem in the search for an analytic solution for this potential. SAHO is
basically a quasi and conditionally exactly solvable (CES) potential; i.e., a few eigenvalues
can be determined at a time if the potential parameters obey certain constraint conditions. So
apart from its wide applicability the problem is itself intrinsically important.
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In this paper, we want to review the problem in the light of supersymmetric quantum
mechanics [17] together with the shape-invariance condition [18]. Most of the earlier methods
have used the one-dimensional problem with different anharmonic terms. We choose the
SAHO in 3D as

V (r) = ar2 + br4 + cr6 +
l(l + 1)

r2
, c > 0, (1)

where the centrifugal term l(l+1)

r2 will make the problem more complicated. We also
prescribe its generalization to N-dimensional space. In [9], Chaudhuri and Mondal have
used supersymmetry (SUSY) formalism for the SAHO, for the ground state only; but they
neither presented the calculation and the results for excited states nor did they discuss
the inherent symmetry for quasi conditional exactness. In [19], the wavefunction ansatz
technique was presented to get low-lying excited states for the one-dimensional sextic potential
[V (x) = Ax6 +Bx2]. However, there remains the question of convergence in the power series
expansion and the choice of the ansatz is parity dependent.

Our technique is a ‘superpotential ansatz’, as the superpotential W is directly related to
the potential V (r) through the Riccati equation [17] (in units such that h̄√

2m
= 1)

V1(r) = W 2 − W ′, (2)

where V1(r) is the original potential V (r) in the shifted energy scale. So just by looking at
the form of the potential one can choose the form of W . This form remains unchanged for
all states as the excited levels are calculated by SUSY level degeneracy relation E

(1)
n+1 = E(2)

n

[17]. One just has to repeat the SUSY transformation in each step, calculate partner potentials
in the hierarchy to get the ground states of each partner, which are the different excited
states of the original potential, according to the level degeneracy relation of the hierarchy of
Hamiltonians. It is well known that SUSY shape-invariance condition [18] is sufficient to
get exact analytic solutions for all the states. In the case of SAHO, we will show that it is
basically shape invariant, only it requires a new set of constraint conditions for each passage
from one member to the next one in the hierarchy of partner potentials. It implies that the
shape invariance is satisfied in a single step when the corresponding constraints are satisfied, in
the process of the construction of the hierarchy of partner potentials. Each step has a different
set of constraint conditions and energies of at most a few levels can be obtained algebraically
depending on the possibility of simultaneous satisfaction of such sets of constraint conditions.

For the potential given in equation (1), we start with the superpotential ansatz

W(r) = Ar + Br3 − D

r
, B > 0, D > 0. (3)

Let E0 be the ground-state energy of the lth partial wave in V (r), then the effective potential
in the shifted energy scale (such that the ground state of V1(r) lies at zero energy) is

V1 = V (r) − E0

= ar2 + br4 + cr6 +
l(l + 1)

r2
− E0.

(4)

According to SSQM

V1 = W 2 − W ′. (5)

From equations (3), (4) and (5), the unknowns A,B and D satisfy

D2 − D = l(l + 1)

A2 − 2BD − 3B = a

2AB = b

B2 = c

2AD + A = E0.

(6)
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The solution of the last four equations of (6) is

B = √
c, A = b

2
√

c
, D = b2

8c
√

c
− 3

2
− a

2
√

c
(7)

and the ground-state energy is given by

E0 = − b

2
√

c

[
2 +

a√
c

− b2

4c
√

c

]
, (8)

together with a constraint condition on the angular momentum(
b2

8c
√

c
− a

2
√

c
− 2

)2

− 1

4
= l(l + 1). (9)

The ground-state wavefunction is

�0(b, c, l) = N0 e− ∫
Wdr

= N0r
l+1 exp

[
−

√
c

4
r4 − b

4
√

c
r2

]
.

(10)

To investigate if the potential V1 is shape invariant, we contruct its supersymmetric partner
[17]

V2 = W 2 + W ′

= [A2 − 2BD + 3B]r2 + 2ABr4 + B2r6 +
(D2 + D)

r2
− 2AD + A

= a′r2 + br4 + cr6 +
l′(l′ + 1)

r2
+ R′,

(11)

where the new parameters (l′, a′, R) are related to the old parameters (using equation (6)) by
translation as

l′(l′ + 1) = D2 + D = l(l + 1) + 2D

a′ = A2 − 2BD + 3B = a + 6
√

c

R′ = −2AD + A = −E0 +
b√
c
.

(12)

The condition for shape-invariance symmetry between two partner potentials V1 and V2 is
mathematically expressed as

V2(x, a1) = V1(x, a2) + R(a1), a2 = f (a1), (13)

where a1 and a2 are parameters appearing in the potentials. So, SAHO (V1) is basically
shape invariant with translation of parameters (equation (12)). But this shape invariance is
not unconditional, since constraint condition (9) must be satisfied. So, the potential admits
conditional shape invariance between the first two partners, which is responsible for the
conditional exact analytic solution for the ground state. But this shape invariance is not
unconditionally valid in successive steps. To see, we repeat our procedure with V2(r) as the
new starting potential, defining V ′(r) = V2(r).

Let E′
0 be the ground-state energy in V ′(r), then in a new shifted energy scale

V ′
1(r) = V ′(r) + E0 − E′

0

= a′r2 + br4 + cr6 +
l′(l′ + 1)

r2
+ R′ + E0 − E′

0.
(14)

Starting with a similar ansatz for its superpotential

Ŵ (r) = A′r + B ′r3 − D′

r
, B ′ > 0, D′ > 0, (15)
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when the new parameters are as in equation (7):

B ′ = √
c, A′ = b

2
√

c
, D′ = b2

8c
√

c
− 9

2
− a

2
√

c
. (16)

The ground-state energy E′
0 (by which SSQM is the first excited state (E1) of the original V1)

is given by

E′
0 = E1 = − b

2
√

c

[
6 +

a√
c

− b2

4c
√

c

]
(17)

subject to the constraint condition (as before)
(

b2

8c
√

c
− a

2
√

c
− 5

)2

− 2

(
b2

8c
√

c
− a

2
√

c

)
+

11

4
= l(l + 1). (18)

The wavefunction for the first excited state is given by [17]

�1(r) = A†(r)�0

=
[
− d

dr
+ W(r)

]
�0.

(19)

So we end up with algebraic expressions for the ground state as well as for the first excited
state, with two constraints—one for each step. A simultaneous solution of two constraints
(equations (9) and (18)) yields

b2 − 4ac − 24c
√

c = 0. (20)

Thus if only constraint (9) is satisfied, the energy of the ground state is given by equation (8);
if only condition (18) is satisfied, the excitation energy of the first excited state is given by
equation (17). On the other hand, if condition (20) together with equation (9) are satisfied,
both the ground and first excited states are given algebraically. However, this corresponds to
l = 1

2 , which is not a physical orbital angular momentum. That is, for a particular angular
momentum l, only the parameters (a, b, c) can be adjusted to satisfy one of the two constraints.

Next, we apply the SUSY formalism to get the ground and excited states of SAHO and
compare with the numerical solution of the Schrödinger equation. We choose three sets of
parameters. In the first case, a = 1, c = 1

7200 ; then the value of b = 0.0243, which is the
solution of equation (20). In the second case, a = 1, c = 1

6728 and the solution of equation (20)
gives b = 0.0252. Finally, in the last case, we choose a = 1, c = 1

6272 , which gives b = 0.0261.
In all the three cases the values of a and c are the same as chosen in [9], when b is calculated
from equation (20). l is determined as 0.5 as required by equation (9) (in ground state) and
equation (18) (in excited state). Although it seems unphysical, it corresponds to l = 0 in N = 4
dimensional space (obtained by equation (29)). In all the three cases, we calculate the ground-
state energy E0 from equation (8) analytically and present them in table 1. In the same table
we also present the exact numerical solution of the Schrödinger equation, the ground-state
energy is exactly reproduced in the SUSY formalism by analytical expression. The results
for the first excited state are presented in table 2. Here we solve for the ground-state energy
of V2 with a translational set of parameters, which gives the first excited state of the original
potential. The newly defined parameters (equation (12)) are a′ = a + 6

√
c = 1.0707 (first

set), 1.0731 (second set) and 1.0757 (third set); the value of l′ becomes 0.75 (equation (12))
and the values of b and c remain unchanged. The ground-state energy of V2 is in excellent
agreement with the numerical results for the first excited state of V1 in all sets. These results
not only reproduce the first excited state, but at the same time they verify the existence of
conditional shape-invariance symmetry with translational sets of parameters.
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Figure 1. Ground-state wavefunction of sextic potential with a = 1, b = 0.0243 and c = 1
7200

(arbitrary normalization).

Table 1. Ground-state energies of V (r) = l(l+1)

r2 + ar2 + br4 + cr6 with a = 1 and different sets of
parameters b and c. Numerical results are also presented.

b c Esusy Enumerical

0.0243 1
7200 4.1390 4.1390

0.0252 1
6728 4.1437 4.1437

0.0261 1
6272 4.1487 4.1487

Table 2. First excited-state energy for the above combinations of table 1, with a = 1. Explanations
are given in the text.

b c E0 (for V2) E1 (for V1)

0.0243 1
7200 8.5356 8.5357

0.0252 1
6728 8.5531 8.5532

0.0261 1
6272 8.5718 8.5719

Table 3. The ground-state energy (E0) and first excited-state energy (E1) of sextic anharmonic
potential with different combinations of a, b and c.

a b c E
susy
0 Eexact

0 E
susy
1 Eexact

1

1.0 0.3845 0.02 5.4384 5.4384 12.7622 12.7625
5.0 0.6840 0.02 9.6734 9.6736 20.5948 20.5957
1.0 5.2915 1.0 10.5830 10.5833 27.1458 27.1484

The ground-state wavefunction is calculated from equation (10) and we plot it in figure 1
(with arbitrary normalization) for the parameters a = 1.0, b = 0.0243 and c = 1

7200 . For the
same set of parameters, we calculate the first excited-state wavefunction using equation (19)
and plot it in figure 2. Note that both the ground- and excited-state wavefunctions are calculated
analytically. The results with higher anharmonicities are presented in table 3 together with
the numerical solution of the Schrödinger equation. The SUSY results are in good agreement
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Figure 2. First excited state of sextic potential with a = 1, b = 0.0243 and c = 1
7200 (arbitrary

normalization).

with the exact numerical solution. The inclusion of higher anharmonicity is clear. In tables 1
and 2, anharmonicity was of small range, the ground and first excited states are almost
equispaced, whereas higher anharmonic terms destroy the picture as shown in table 3.

It is clear that we can repeat our procedure to construct higher partner potentials in the
hierarchy to get higher excited states. For the second excited state, we just repeat the procedure
and set up the translational shape invariance as

l′′(l′′ + 1) = l′(l′ + 1) + 2D′

a′′ = a′ + 6
√

c

R′′ = −2A′D′ + A′,
(21)

where A′ and D′ are given in equation (16). It yields the ground-state energy of the partner
potential in the present hirarchy as

E′′
0 = − b

2
√

c

[
10 +

a√
c

− b2

4c
√

c

]
(22)

subject to the constraint condition (as before)(
b2

8c
√

c
− a

2
√

c
− 15

2

)2

−
(

b2

8c
√

c
− a

2
√

c
− 15

2

)
= l′′(l′′ + 1). (23)

It should produce the second excited state of the original potential according to the SUSY
algebra, but as SAHO is basically a conditionally exactly solvable, simultaneous satisfaction of
all three conditions (equations (9), (18) and (23)) this is impossible. However, a simultaneous
solution of equations (18) and (23) is possible which will yield the first and second excited
states at a time and the condition for that becomes

b2 − 4ac − 48c
√

c = 0. (24)

Similar arguments result in the ground state of the potential in the next hierarchy as

E′′′
0 = − b

2
√

c

[
14 +

a√
c

− b2

4c
√

c

]
(25)

with constraint condition(
b2

8c
√

c
− a

2
√

c
− 11

)2

− 1

4
= l′′′(l′′′ + 1), (26)
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where l′′′ is related to l′′ as l′′′(l′′′ + 1) = l′′(l′′ + 1) + 2D′′, where D′′ = b2

8c
√

c
− 15

2 − a

2
√

c
.

A simultaneous solution of equations (26) and (23) yields

b2 − 4ac − 72c
√

c = 0. (27)

So, we note that in each step condition for translational shape invariance is established and
the corresponding ground-state energy is obtained analytically but in each step one additional
constraint condition is satisfied. However, the number of states to be determined analytically
is restricted as it depends on a simultaneous solution of constraint conditions.

Next, we want to mention another important point regarding the other solutions of the
Riccati equation. It is well known that equation (3) is a special form of the solution of
equation (2). However, the most general superpotential has the form W(r) = W(r) + φ(r),
which satisfies equations (5) and (11) [17]. W has the form W(r) + d

dr
ln[I (r) + λ], where

I (r) ≡ ∫
ψ2

0 (r ′) dr ′. It gives a family of potentials V1(r) = V1(r) − 2 d2

dr2 ln[I (r) + λ] having
the same SUSY partner V2(r). For a normalized ground-state wavefunction, λ excludes the
interval −1 � λ � 0. For λ → ±∞,V1 → V1. V1 is isospectral to V1 [17]. As we decrease
λ from ∞ to zero, the shape changes drastically. The wavefunction also changes, however
the energy eigenvalues will remain unchanged. So, the other possible solutions of Riccati
equations will lead to the same eigenspectrum.

The concept of conditional shape invariance can easily be generalized to N dimensions.
The radial Schrödinger equation for a spherically symmetric potential in an N-dimensional
space is given by

−
[

d2R

dr2
+

N − 1

r

dR

dr

]
+

l(l + N − 2)

r2
R = [E − V (r)]. (28)

Now taking ψ(r) = r(N−1)/2R(r), equation (28) is transformed to

−d2ψ

dr2
+

[
	(	 + 1)

r2
+ V (r)

]
ψ = Eψ, (29)

where 	 = l + N−3
2 .

So, the radial Schrödinger equation in N dimensions for a spherically symmetric potential
has the same form as that in three dimensions, only angular momentum l has to be replaced
by 	. Next, to prove conditional shape invariance in CES models in an N-dimensional space,
one can proceed in the same way as for three dimensions.

We conclude that the potential given by equation (1) is conditionally shape invariant in
one or at most two steps, for a restricted set of parameters satisfying one or at most two
conditions of constraints, respectively. Our ‘superpotential ansatz’ technique is a powerful
tool, no initial input is necessary for our technique. From the structure of the potential
we guess the form of the superpotential, and by using simple SUSY algebra we can obtain
unknown parameters of the superpotential in terms of known parameters of the potential. This
technique is applicable to get any excited state of the potential. Our approach also highlights
the underlying conditional shape-invariance symmetry which is responsible for conditional
exactness. To the best of our knowledge, this has not been pointed out earlier.
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